organic compounds

Z = 4

Mo  $K\alpha$  radiation

 $0.12 \times 0.11 \times 0.10 \text{ mm}$ 

 $\mu = 0.21 \text{ mm}^{-1}$ 

T = 290 K

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# (1*E*)-6-Methoxy-3,4-dihydronaphthalen-1(2*H*)-one *O*-(*p*-tolylsulfonyl)oxime

### Rong-Bi Han,<sup>a</sup> Bo Zhang<sup>b</sup> and Feng-Yu Piao<sup>c\*</sup>

<sup>a</sup>Key Laboratory of Organism Functional Factors of the Changbai Moutain, Yanbian University, Ministry of Education, Yanji 133000, People's Republic of China, <sup>b</sup>Institute of Chemical Technology of Yanbian University, Yanji 133000, People's Republic of China, and <sup>c</sup>Department of Chemistry, College of Science, Yanbian Universiy, Longjing, 133400, People's Republic of China Correspondence e-mail: fypiao4989@yahoo.com.cn

Received 21 September 2010; accepted 6 October 2010

Key indicators: single-crystal X-ray study; T = 290 K; mean  $\sigma$ (C–C) = 0.003 Å; disorder in main residue; R factor = 0.044; wR factor = 0.135; data-to-parameter ratio = 17.1.

In the title compound,  $C_{18}H_{19}NO_4S$ , the two benzene rings form a dihedral angle of 68.37 (11)°. One of the C atoms of the fused ring bonded to the N atom displays positional disorder with site-occupation factors of 0.763 (7) and 0.237 (7) and the ring has an envelope conformation with the disordered C atoms located on opposite sides of the plane formed by the other atoms. In the crystal, intermolecular  $C-H\cdots O$ hydrogen bonds link the molecules to form a two-dimensional supramolecular network. The crystal structure is further stablized by weak intermolecular  $C-H\cdots \pi$  interactions.

#### **Related literature**

The title compound has been used in our study (Byoung *et al.* 2000) of the effect of the reaction conditions on the Beckmanm rearrangement of 6-methoxy-3,4-dihydronaphthalen-1(2H)-one oxime (Xiao *et al.*, 2007). For details of the synthesis, see Byoung *et al.* (2000). For a related structure, see Jin *et al.* (2010).



#### Experimental

*Crystal data* C<sub>18</sub>H<sub>19</sub>NO<sub>4</sub>S

 $M_r = 345.41$ 

| Monoclinic, $P2_1/c$           |  |
|--------------------------------|--|
| a = 13.478 (5)  Å              |  |
| b = 9.255 (5) Å                |  |
| c = 17.707 (8)  Å              |  |
| $\beta = 128.22 \ (3)^{\circ}$ |  |
| $V = 1735.3 (16) Å^3$          |  |

#### Data collection

| Rigaku R-AXIS RAPID                    | 16447 measured reflections             |
|----------------------------------------|----------------------------------------|
| diffractometer                         | 3939 independent reflections           |
| Absorption correction: multi-scan      | 3052 reflections with $I > 2\sigma(I)$ |
| (ABSCOR; Higashi, 1995)                | $R_{\rm int} = 0.029$                  |
| $T_{\min} = 0.976, \ T_{\max} = 0.980$ |                                        |
|                                        |                                        |

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.044$ | 230 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.135$               | H-atom parameters constrained                              |
| S = 1.01                        | $\Delta \rho_{\rm max} = 0.44 \text{ e } \text{\AA}^{-3}$  |
| 3939 reflections                | $\Delta \rho_{\rm min} = -0.34 \text{ e } \text{\AA}^{-3}$ |

#### Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C12–C17 ring.

| $D - H \cdots A$            | D-H        | $H \cdot \cdot \cdot A$ | $D{\cdots}A$                  | D-H                  | $\cdots A$ |
|-----------------------------|------------|-------------------------|-------------------------------|----------------------|------------|
| $C6-H6\cdots O1^{i}$        | 0.93       | 2.57                    | 3.293 (3)                     | 135                  |            |
| $C10-H10B\cdots O2^{ii}$    | 0.97       | 2.48                    | 3.237 (5)                     | 135                  |            |
| C15−H15···O1 <sup>iii</sup> | 0.93       | 2.68                    | 3.430 (3)                     | 139                  |            |
| $C9-H9B\cdots Cg1^{iv}$     | 0.97       | 2.85                    | 3.750 (3)                     | 156                  |            |
| Symmetry codes: (i)         | -r + 3 - v | +2 -7 + 2               | (ii) $-r + 2 v + \frac{1}{2}$ | $-7 \pm \frac{3}{2}$ | (iii)      |

Symmetry codes: (i) -x + 3, -y + 2, -z + 2; (ii)  $-x + 2, y + \frac{1}{2}, -z + \frac{3}{2}$ ; (iii)  $-x + 2, y - \frac{1}{2}, -z + \frac{3}{2}$ ; (iv) -x + 2, -y + 2, -z + 2.

Data collection: *RAPID-AUTO* (Rigaku, 1998); cell refinement: *RAPID-AUTO*; data reduction: *CrystalStructure* (Molecular Structure Corporation & Rigaku, 2002); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008).

The authors acknowledge financial support from the National Natural Science Foundation of China (grant No. 20662010) and the Specialized Research Fund for the Doctoral Program of Higher Education (grant No. 2006184001).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VM2048).

#### References

Byoung, S. L., Soyoung, C., In, Y. L., Lee, B. S., Choong, E. S. & Dae, Y. C. (2000). Bull. Korean Chem. Soc. 21, 860–866.

- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Jin, D.-C., Piao, F.-Y. & Han, R.-B. (2010). Acta Cryst. E66, o2504.
- Molecular Structure Corporation & Rigaku (2002). *CrystalStructure*. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
- Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Xiao, L. F., Xia, C. G. & Chen, J. (2007). Tetrahedron Lett. 48, 7218–7221.

Acta Cryst. (2010). E66, o2775 [ doi:10.1107/81600536810039899 ]

# (1E)-6-Methoxy-3,4-dihydronaphthalen-1(2H)-one O-(p-tolylsulfonyl)oxime

# R.-B. Han, B. Zhang and F.-Y. Piao

#### Comment

Generally, 1,3,4,5-tetrahydro-7-methoxy-2*H*-1- benzazepin-2-one is obtained as major product from the Beckmanm rearrangement (BR) of 6-methoxy-3,4-dihydronaphthalen-1(2*H*)-one oxime (Xiao *et al.*, 2007). Recently, we have found that the product distribution of this BR greatly varied with reaction time and termperature (Byoung *et al.* 2000). We report here the crystal structure of the title comound, which was used in our attempts to study the effect of the reaction conditions on the ratio of the two isomers of product.

In the title compound, as shown in Fig. 1, all bond lengths and angles are normal and comparable with those reported for the related structure (Jin *et al.*, 2010). The disordered C10 and C10' atoms with site occupation factors of 0.76 and 0.24, respectively, lie at different sides of the plane defined by C8, C9, C11, C12 and C13. In the crystal, weak C—H···O hydrogen bonds (Table 1) link the molecules into a two-dimensional network. In additon, a C—H··· $\pi$  interaction between H9B and a neigboring benzene ring ocurs (H9B···*Cg*1<sup>i</sup> = 2.846 (5) Å, *Cg*1 is the centroid of ring C12-C17, symmetry code i : 2 - *x*, 2 - *y*, 2 - *z*). The crystal structure is further stablized by Van der Waals' forces.

#### Experimental

The title compound was prepared according to literature (Byoung *et al.* 2000) and single crystals suitable for X-ray diffraction were obtained from a solution of ethyl acetate by slow evaporation at room temperature.

#### Refinement

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with distances C—H = 0.93, 0.96 and 0.97 Å for aryl, methyl and methylene H-atoms and  $U_{iso}(H) = 1.5$  (methyl) and 1.2 (the rest)  $U_{eq}(C)$ .

#### **Figures**



Fig. 1. The molecular structure of the title compound, with the atom numbering. Displacement ellipsoids of non-H atoms are drawn at the 30% probalility level.

#### (1E)-6-Methoxy-3,4-dihydronaphthalen-1(2H)-one O-(p-tolylsulfonyl)oxime

*Crystal data* C<sub>18</sub>H<sub>19</sub>NO<sub>4</sub>S

F(000) = 728

| $M_r = 345.41$                 |
|--------------------------------|
| Monoclinic, $P2_1/c$           |
| Hall symbol: -P 2ybc           |
| <i>a</i> = 13.478 (5) Å        |
| <i>b</i> = 9.255 (5) Å         |
| c = 17.707 (8)  Å              |
| $\beta = 128.22 \ (3)^{\circ}$ |
| $V = 1735.3 (16) \text{ Å}^3$  |
| Z = 4                          |

#### Data collection

| Rigaku R-AXIS RAPID<br>diffractometer                        | 3939 independent reflections                                              |
|--------------------------------------------------------------|---------------------------------------------------------------------------|
| Radiation source: fine-focus sealed tube                     | 3052 reflections with $I > 2\sigma(I)$                                    |
| graphite                                                     | $R_{\rm int} = 0.029$                                                     |
| ω scans                                                      | $\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.1^{\circ}$ |
| Absorption correction: multi-scan<br>(ABSCOR; Higashi, 1995) | $h = -17 \rightarrow 17$                                                  |
| $T_{\min} = 0.976, \ T_{\max} = 0.980$                       | $k = -11 \rightarrow 11$                                                  |
| 16447 measured reflections                                   | $l = -22 \rightarrow 21$                                                  |

#### Refinement

| Refinement on $F^2$                                    | Secondary atom site location: difference Fourier map                                                                                                     |
|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Least-squares matrix: full                             | Hydrogen site location: inferred from neighbouring sites                                                                                                 |
| $R[F^2 > 2\sigma(F^2)] = 0.044$                        | H-atom parameters constrained                                                                                                                            |
| $wR(F^2) = 0.135$                                      | $w = 1/[\sigma^2(F_o^2) + (0.0686P)^2 + 0.4858P]$<br>where $P = (F_o^2 + 2F_c^2)/3$                                                                      |
| <i>S</i> = 1.01                                        | $(\Delta/\sigma)_{\rm max} = 0.001$                                                                                                                      |
| 3939 reflections                                       | $\Delta \rho_{max} = 0.44 \text{ e } \text{\AA}^{-3}$                                                                                                    |
| 230 parameters                                         | $\Delta \rho_{\rm min} = -0.34 \text{ e } \text{\AA}^{-3}$                                                                                               |
| 0 restraints                                           | Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008),<br>Fc <sup>*</sup> =kFc[1+0.001xFc <sup>2</sup> $\lambda^3$ /sin(2 $\theta$ )] <sup>-1/4</sup> |
| Primary atom site location: structure-invariant direct | Extinction coefficient: 0.069 (4)                                                                                                                        |

 $D_{\rm x} = 1.322 \ {\rm Mg \ m}^{-3}$ 

 $\theta = 3.1 - 27.5^{\circ}$  $\mu = 0.21 \text{ mm}^{-1}$ T = 290 KBlock, colorless  $0.12\times0.11\times0.10~mm$ 

Mo *K* $\alpha$  radiation,  $\lambda = 0.71073$  Å Cell parameters from 11474 reflections

methods

#### Special details

Experimental. (See detailed section in the paper)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

|      | x            | у            | Z            | $U_{\rm iso}^*/U_{\rm eq}$ | Occ. (<1) |
|------|--------------|--------------|--------------|----------------------------|-----------|
| S1   | 1.21154 (4)  | 1.01704 (6)  | 0.84699 (3)  | 0.05339 (18)               |           |
| 01   | 1.32298 (13) | 1.09992 (16) | 0.88664 (11) | 0.0688 (4)                 |           |
| 02   | 1.11691 (15) | 1.01052 (18) | 0.74596 (10) | 0.0720 (4)                 |           |
| 03   | 1.15381 (12) | 1.09228 (14) | 0.89346 (9)  | 0.0557 (3)                 |           |
| O4   | 0.53547 (14) | 0.81979 (17) | 0.77887 (12) | 0.0738 (4)                 |           |
| N1   | 1.03738 (14) | 1.01680 (16) | 0.85957 (11) | 0.0510 (4)                 |           |
| C1   | 1.3561 (3)   | 0.4210 (3)   | 1.0232 (2)   | 0.0928 (8)                 |           |
| H1A  | 1.3260       | 0.3480       | 0.9750       | 0.139*                     |           |
| H1B  | 1.3191       | 0.4067       | 1.0547       | 0.139*                     |           |
| H1C  | 1.4464       | 0.4148       | 1.0696       | 0.139*                     |           |
| C2   | 1.31973 (19) | 0.5680 (2)   | 0.97663 (15) | 0.0600 (5)                 |           |
| C3   | 1.19864 (19) | 0.5964 (2)   | 0.89321 (15) | 0.0624 (5)                 |           |
| Н3   | 1.1395       | 0.5222       | 0.8642       | 0.075*                     |           |
| C4   | 1.16441 (17) | 0.7318 (2)   | 0.85263 (13) | 0.0562 (5)                 |           |
| H4   | 1.0827       | 0.7489       | 0.7971       | 0.067*                     |           |
| C5   | 1.25256 (15) | 0.8425 (2)   | 0.89508 (12) | 0.0475 (4)                 |           |
| C6   | 1.37496 (16) | 0.8166 (2)   | 0.97757 (13) | 0.0534 (4)                 |           |
| Н6   | 1.4345       | 0.8905       | 1.0058       | 0.064*                     |           |
| C7   | 1.40688 (18) | 0.6800(2)    | 1.01695 (14) | 0.0613 (5)                 |           |
| H7   | 1.4889       | 0.6625       | 1.0719       | 0.074*                     |           |
| C8   | 0.97831 (16) | 1.08889 (18) | 0.88218 (11) | 0.0450 (4)                 |           |
| C9   | 1.0207 (2)   | 1.2307 (2)   | 0.93435 (15) | 0.0603 (5)                 |           |
| H9A  | 1.0587       | 1.2886       | 0.9126       | 0.072*                     |           |
| H9B  | 1.0842       | 1.2136       | 1.0027       | 0.072*                     |           |
| C10  | 0.9081 (4)   | 1.3146 (3)   | 0.9165 (3)   | 0.0698 (12)                | 0.763 (7) |
| H10A | 0.9403       | 1.3983       | 0.9584       | 0.084*                     | 0.763 (7) |
| H10B | 0.8536       | 1.3488       | 0.8506       | 0.084*                     | 0.763 (7) |
| C11  | 0.8345 (3)   | 1.2276 (3)   | 0.9335 (2)   | 0.0809 (7)                 |           |
| H11A | 0.7615       | 1.2826       | 0.9155       | 0.097*                     |           |
| H11B | 0.8851       | 1.2063       | 1.0017       | 0.097*                     |           |
| C12  | 0.79064 (18) | 1.08776 (19) | 0.87810 (13) | 0.0529 (4)                 |           |
| C10' | 0.9604 (8)   | 1.2634 (9)   | 0.9825 (7)   | 0.053 (3)                  | 0.237 (7) |
| H10C | 1.0092       | 1.2141       | 1.0441       | 0.064*                     | 0.237 (7) |
| H10D | 0.9688       | 1.3662       | 0.9958       | 0.064*                     | 0.237 (7) |
| C13  | 0.86031 (17) | 1.02224 (18) | 0.85398 (12) | 0.0454 (4)                 |           |
| C14  | 0.81694 (19) | 0.8901 (2)   | 0.80425 (15) | 0.0574 (5)                 |           |
| H14  | 0.8619       | 0.8455       | 0.7868       | 0.069*                     |           |
| C15  | 0.70982 (19) | 0.8259 (2)   | 0.78110 (14) | 0.0593 (5)                 |           |
| H15  | 0.6834       | 0.7377       | 0.7491       | 0.071*                     |           |
| C16  | 0.64081 (18) | 0.8922 (2)   | 0.80522 (14) | 0.0549 (5)                 |           |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

| C17  | 0.6813 (2) | 1.0222 (2) | 0.85367 (16) | 0.0616 (5) |
|------|------------|------------|--------------|------------|
| H17  | 0.6352     | 1.0664     | 0.8702       | 0.074*     |
| C18  | 0.4673 (3) | 0.8776 (3) | 0.8090 (2)   | 0.0938 (8) |
| H18A | 0.4301     | 0.9682     | 0.7773       | 0.141*     |
| H18B | 0.5238     | 0.8923     | 0.8773       | 0.141*     |
| H18C | 0.4020     | 0.8112     | 0.7928       | 0.141*     |
|      |            |            |              |            |

# Atomic displacement parameters $(Å^2)$

|      | $U^{11}$    | U <sup>22</sup> | U <sup>33</sup> | $U^{12}$     | $U^{13}$    | $U^{23}$     |
|------|-------------|-----------------|-----------------|--------------|-------------|--------------|
| S1   | 0.0438 (3)  | 0.0658 (3)      | 0.0536 (3)      | -0.0040 (2)  | 0.0316 (2)  | 0.0018 (2)   |
| 01   | 0.0533 (8)  | 0.0715 (9)      | 0.0878 (10)     | -0.0104 (7)  | 0.0468 (8)  | 0.0057 (7)   |
| O2   | 0.0609 (9)  | 0.0995 (12)     | 0.0511 (8)      | 0.0048 (8)   | 0.0324 (7)  | 0.0083 (7)   |
| O3   | 0.0463 (7)  | 0.0579 (8)      | 0.0656 (8)      | -0.0083 (6)  | 0.0360 (6)  | -0.0078 (6)  |
| O4   | 0.0601 (9)  | 0.0825 (10)     | 0.0925 (11)     | -0.0191 (8)  | 0.0540 (8)  | -0.0229 (8)  |
| N1   | 0.0445 (8)  | 0.0534 (8)      | 0.0581 (9)      | -0.0071 (6)  | 0.0333 (7)  | -0.0044 (7)  |
| C1   | 0.0898 (18) | 0.0653 (15)     | 0.120 (2)       | 0.0104 (13)  | 0.0630 (17) | 0.0081 (14)  |
| C2   | 0.0582 (11) | 0.0550 (11)     | 0.0729 (12)     | -0.0001 (9)  | 0.0437 (10) | -0.0079 (9)  |
| C3   | 0.0536 (11) | 0.0591 (12)     | 0.0713 (12)     | -0.0154 (9)  | 0.0371 (10) | -0.0208 (9)  |
| C4   | 0.0404 (9)  | 0.0651 (12)     | 0.0523 (10)     | -0.0100 (8)  | 0.0234 (8)  | -0.0147 (8)  |
| C5   | 0.0384 (8)  | 0.0581 (10)     | 0.0473 (9)      | -0.0061 (7)  | 0.0271 (7)  | -0.0084 (7)  |
| C6   | 0.0372 (9)  | 0.0621 (11)     | 0.0547 (10)     | -0.0100 (8)  | 0.0253 (8)  | -0.0095 (8)  |
| C7   | 0.0413 (10) | 0.0717 (13)     | 0.0605 (11)     | 0.0022 (9)   | 0.0263 (9)  | -0.0019 (9)  |
| C8   | 0.0485 (9)  | 0.0461 (9)      | 0.0425 (8)      | 0.0004 (7)   | 0.0292 (7)  | 0.0029 (7)   |
| C9   | 0.0692 (12) | 0.0513 (10)     | 0.0713 (12)     | -0.0148 (9)  | 0.0490 (11) | -0.0123 (9)  |
| C10  | 0.093 (2)   | 0.0427 (15)     | 0.097 (3)       | -0.0078 (15) | 0.070 (2)   | -0.0106 (16) |
| C11  | 0.0880 (17) | 0.0619 (13)     | 0.1167 (19)     | -0.0127 (12) | 0.0753 (16) | -0.0318 (13) |
| C12  | 0.0575 (11) | 0.0479 (10)     | 0.0607 (10)     | -0.0007 (8)  | 0.0404 (9)  | -0.0056 (8)  |
| C10' | 0.059 (5)   | 0.041 (4)       | 0.055 (5)       | -0.001 (3)   | 0.033 (4)   | -0.005 (4)   |
| C13  | 0.0498 (9)  | 0.0462 (9)      | 0.0452 (8)      | -0.0020 (7)  | 0.0318 (8)  | -0.0022 (7)  |
| C14  | 0.0605 (11) | 0.0594 (11)     | 0.0698 (12)     | -0.0097 (9)  | 0.0490 (10) | -0.0185 (9)  |
| C15  | 0.0619 (12) | 0.0582 (11)     | 0.0661 (11)     | -0.0140 (9)  | 0.0438 (10) | -0.0210 (9)  |
| C16  | 0.0505 (10) | 0.0610 (11)     | 0.0583 (10)     | -0.0078 (8)  | 0.0362 (9)  | -0.0062 (8)  |
| C17  | 0.0608 (12) | 0.0628 (12)     | 0.0780 (13)     | -0.0003 (9)  | 0.0513 (11) | -0.0110 (10) |
| C18  | 0.0728 (16) | 0.0988 (19)     | 0.140 (2)       | -0.0144 (14) | 0.0808 (18) | -0.0213 (17) |

Geometric parameters (Å, °)

| S1—O2  | 1.4169 (17) | C9—C10   | 1.553 (4) |
|--------|-------------|----------|-----------|
| S1—O1  | 1.4257 (15) | С9—Н9А   | 0.9700    |
| S1—O3  | 1.5997 (14) | С9—Н9В   | 0.9700    |
| S1—C5  | 1.748 (2)   | C10-C11  | 1.446 (4) |
| O3—N1  | 1.465 (2)   | C10—H10A | 0.9700    |
| O4—C16 | 1.365 (2)   | C10—H10B | 0.9700    |
| O4—C18 | 1.422 (3)   | C10—H10D | 1.2028    |
| N1—C8  | 1.278 (2)   | C11—C12  | 1.507 (3) |
| C1—C2  | 1.507 (3)   | C11—H11A | 0.9700    |
| C1—H1A | 0.9600      | C11—H11B | 0.9700    |
| C1—H1B | 0.9600      | C12—C13  | 1.388 (2) |
|        |             |          |           |

| C1—H1C                  | 0.9600                 | C12—C17                             | 1.393 (3)    |
|-------------------------|------------------------|-------------------------------------|--------------|
| C2—C7                   | 1.388 (3)              | C10'—H10C                           | 0.9700       |
| С2—С3                   | 1.390 (3)              | C10'—H10D                           | 0.9700       |
| С3—С4                   | 1.374 (3)              | C13—C14                             | 1.406 (3)    |
| С3—Н3                   | 0.9300                 | C14—C15                             | 1.368 (3)    |
| C4—C5                   | 1.387 (3)              | C14—H14                             | 0.9300       |
| C4—H4                   | 0.9300                 | C15—C16                             | 1.384 (3)    |
| C5—C6                   | 1.390 (3)              | C15—H15                             | 0.9300       |
| C6—C7                   | 1.378 (3)              | C16—C17                             | 1.379 (3)    |
| С6—Н6                   | 0.9300                 | С17—Н17                             | 0.9300       |
| С7—Н7                   | 0.9300                 | C18—H18A                            | 0.9600       |
| C8—C13                  | 1.475 (2)              | C18—H18B                            | 0.9600       |
| C8—C9                   | 1.499 (3)              | C18—H18C                            | 0.9600       |
| 02 - 81 - 01            | 119 72 (10)            | C11—C10—C9                          | 1129(3)      |
| 02 - 81 - 03            | 108 89 (9)             | $C_{11}$ $C_{10}$ $H_{10A}$         | 109.0        |
| 01 - 51 - 03            | 108.89(9)<br>102.24(9) | $C_{P}$ $C_{10}$ $H_{10A}$          | 109.0        |
| 02 - 81 - 05            | 102.24(9)<br>110.00(9) | $C_{11}$ $C_{10}$ $H_{10B}$         | 109.0        |
| 02 - 31 - 05            | 110.00(9)<br>100.74(0) | $C_{10}$ $C_{10}$ $H_{10}$ $H_{10}$ | 109.0        |
| 01 - 31 - 05            | 109.74(9)<br>105.04(8) |                                     | 109.0        |
| N1 02 S1                | 103.04(8)              |                                     | 107.8        |
| NI = 03 = SI            | 108.09 (10)            |                                     | 92.1         |
| $C_{10} - 04 - C_{18}$  | 117.00 (18)            |                                     | 93.1<br>20.6 |
| $C_{0} = N_{1} = 0.5$   | 109.80 (14)            | H10A - C10 - H10D                   | 29.0         |
| $C_2 = C_1 = H_1 R$     | 109.5                  |                                     | 157.4        |
|                         | 109.5                  | C10 - C11 - C12                     | 112.7 (2)    |
| HIA—CI—HIB              | 109.5                  | CIQ—CII—HIIA                        | 109.1        |
|                         | 109.5                  | CI2—CII—HIIA                        | 109.1        |
| HIA—CI—HIC              | 109.5                  |                                     | 109.1        |
| HIB—CI—HIC              | 109.5                  |                                     | 109.1        |
| $C_{1} = C_{2} = C_{3}$ | 117.94 (19)            |                                     | 107.8        |
| $C/=C_2$                | 120.5 (2)              |                                     | 120.08 (17)  |
| $C_3 = C_2 = C_1$       | 121.5 (2)              |                                     | 120.54 (18)  |
| C4 - C3 - C2            | 121.47 (18)            |                                     | 119.35 (18)  |
| C4—C3—H3                | 119.3                  | HIOC—CIO—HIOD                       | 107.1        |
| С2—С3—Н3                | 119.3                  | C12-C13-C14                         | 118.31 (17)  |
| $C_3 = C_4 = C_5$       | 119.52 (18)            | C12—C13—C8                          | 120.39 (16)  |
| C3—C4—H4                | 120.2                  | C14—C13—C8                          | 121.28 (16)  |
| С5—С4—Н4                | 120.2                  | C15—C14—C13                         | 121.21 (17)  |
| C4—C5—C6                | 120.27 (18)            | C15—C14—H14                         | 119.4        |
| C4—C5—S1                | 120.82 (14)            | C13—C14—H14                         | 119.4        |
| C6—C5—S1                | 118.91 (14)            | C14—C15—C16                         | 120.07 (18)  |
| C7—C6—C5                | 119.09 (17)            | C14—C15—H15                         | 120.0        |
| С7—С6—Н6                | 120.5                  | C16—C15—H15                         | 120.0        |
| С5—С6—Н6                | 120.5                  | O4—C16—C17                          | 124.63 (18)  |
| C6—C7—C2                | 121.69 (18)            | 04—C16—C15                          | 115.63 (17)  |
| С6—С7—Н7                | 119.2                  | C17—C16—C15                         | 119.73 (18)  |
| С2—С7—Н7                | 119.2                  | C16—C17—C12                         | 120.59 (18)  |
| N1—C8—C13               | 115.19 (16)            | С16—С17—Н17                         | 119.7        |
| N1—C8—C9                | 125.19 (17)            | С12—С17—Н17                         | 119.7        |
| C13—C8—C9               | 119.62 (15)            | O4—C18—H18A                         | 109.5        |

| C8—C9—C10     | 111.14 (19)  | O4C18H18B       | 109.5        |
|---------------|--------------|-----------------|--------------|
| С8—С9—Н9А     | 109.4        | H18A—C18—H18B   | 109.5        |
| С10—С9—Н9А    | 109.4        | O4—C18—H18C     | 109.5        |
| С8—С9—Н9В     | 109.4        | H18A—C18—H18C   | 109.5        |
| С10—С9—Н9В    | 109.4        | H18B-C18-H18C   | 109.5        |
| H9A—C9—H9B    | 108.0        |                 |              |
| O2—S1—O3—N1   | 52.91 (14)   | C8—C9—C10—C11   | 50.4 (4)     |
| O1—S1—O3—N1   | -179.47 (11) | C9-C10-C11-C12  | -53.4 (4)    |
| C5—S1—O3—N1   | -64.88 (12)  | C10-C11-C12-C13 | 28.5 (4)     |
| S1—O3—N1—C8   | -169.09 (12) | C10-C11-C12-C17 | -153.5 (3)   |
| C7—C2—C3—C4   | -1.6 (3)     | C17—C12—C13—C14 | 0.5 (3)      |
| C1—C2—C3—C4   | 177.8 (2)    | C11-C12-C13-C14 | 178.5 (2)    |
| C2—C3—C4—C5   | 0.6 (3)      | C17—C12—C13—C8  | -178.15 (17) |
| C3—C4—C5—C6   | 0.6 (3)      | C11—C12—C13—C8  | -0.1 (3)     |
| C3—C4—C5—S1   | -178.62 (15) | N1-C8-C13-C12   | 177.43 (16)  |
| O2—S1—C5—C4   | -31.08 (18)  | C9—C8—C13—C12   | -2.0 (3)     |
| O1—S1—C5—C4   | -164.80 (15) | N1-C8-C13-C14   | -1.1 (3)     |
| O3—S1—C5—C4   | 85.95 (16)   | C9—C8—C13—C14   | 179.43 (18)  |
| O2—S1—C5—C6   | 149.71 (15)  | C12-C13-C14-C15 | -0.9 (3)     |
| O1—S1—C5—C6   | 16.00 (17)   | C8-C13-C14-C15  | 177.70 (18)  |
| O3—S1—C5—C6   | -93.26 (16)  | C13-C14-C15-C16 | 1.1 (3)      |
| C4—C5—C6—C7   | -0.7 (3)     | C18—O4—C16—C17  | -4.3 (3)     |
| S1—C5—C6—C7   | 178.53 (15)  | C18—O4—C16—C15  | 174.9 (2)    |
| C5—C6—C7—C2   | -0.4 (3)     | C14—C15—C16—O4  | 179.88 (18)  |
| C3—C2—C7—C6   | 1.5 (3)      | C14-C15-C16-C17 | -0.8 (3)     |
| C1—C2—C7—C6   | -177.9 (2)   | O4—C16—C17—C12  | 179.6 (2)    |
| O3—N1—C8—C13  | -178.59 (13) | C15—C16—C17—C12 | 0.4 (3)      |
| O3—N1—C8—C9   | 0.8 (2)      | C13-C12-C17-C16 | -0.2 (3)     |
| N1—C8—C9—C10  | 158.5 (2)    | C11—C12—C17—C16 | -178.3 (2)   |
| C13—C8—C9—C10 | -22.2 (3)    |                 |              |

# *Hydrogen-bond geometry (Å, °)*

| <i>Cg</i> 1 is the centroid of the C12–C17 ring. |             |              |              |            |
|--------------------------------------------------|-------------|--------------|--------------|------------|
| D—H···A                                          | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | D—H··· $A$ |
| C6—H6···O1 <sup>i</sup>                          | 0.93        | 2.57         | 3.293 (3)    | 135        |
| C10—H10B···O2 <sup>ii</sup>                      | 0.97        | 2.48         | 3.237 (5)    | 135        |
| C15—H15…O1 <sup>iii</sup>                        | 0.93        | 2.68         | 3.430 (3)    | 139        |
| C9—H9B…Cg1 <sup>iv</sup>                         | 0.97        | 2.85         | 3.750 (3)    | 156        |

Symmetry codes: (i) -x+3, -y+2, -z+2; (ii) -x+2, y+1/2, -z+3/2; (iii) -x+2, y-1/2, -z+3/2; (iv) -x+2, -y+2, -z+2.



Fig. 1